skip to main content


Search for: All records

Creators/Authors contains: "Li, Qifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 18, 2024
  2. Water and power systems are increasingly interdependent due to the growing number of electricity-driven water facilities. The security of one system can be affected by a contingency in the other system. This paper investigates a security-constrained operation problem of the energy-water nexus (EWN), which is a computationally challenging optimization problem due to the nonlinearity, nonconvexity, and size. We propose a two-step iterative contingency filtering method based on the feasibility and rating of the contingencies to decrease the size of the problem. The optimal power and water flow are obtained in a normal situation by considering the set of contingencies that can not be controlled with corrective actions. The feasibility check of the contingencies is performed in the second step, followed by a rating of the uncontrollable contingencies. Finally, the critical contingencies are obtained and added to the first step for the next iteration. We also employ convex technologies to reduce the computation burden. The proposed method is validated via two case studies. Results indicate that this approach can efficiently attain optimal values. 
    more » « less
  3. null (Ed.)
    The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Microgrids (MGs) comprising multiple interconnected distributed energy resources (DERs) with coordinated control strategies can operate in both grid-connected and islanded modes. In the grid-connected mode, the frequency and bus voltages are maintained by the utility grid. In the islanded mode, the DERs maintain the frequency and bus voltages in the MG. This paper presents a load demand sharing strategy in an islanded voltage source inverter-based microgrid (VSI-MG). The survivability of the interconnected MG in the presence of a single fully loaded VSI in an islanded VSI-MG is investigated. The concept of virtual synchronous machines (VSM) that enables the modeling of the VSI to emulate the inertia effect of synchronous machines is applied and then a Jacobian-based approach is formulated that takes into account, the capacity of the VSI. Simulation results are presented to verify the effectiveness of the approach. 
    more » « less